CpG-ODN Attenuates Pathological Cardiac Hypertrophy and Heart Failure by Activation of PI3Kα-Akt Signaling
نویسندگان
چکیده
Phosphoinositide-3-kinase α (PI3Kα) represents a potential novel drug target for pathological cardiac hypertrophy (PCH) and heart failure. Oligodeoxynucleotides containing CpG motifs (CpG-ODN) are classic agonists of Toll-like receptor 9 (TLR9), which typically activates PI3K-Akt signaling in immune cells; however, the role of the nucleotide TLR9 agonists in cardiac myocytes is largely unknown. Here we report that CpG-ODN C274 could both attenuate PCH and improve cardiac dysfunction by activating PI3Kα-Akt signaling cascade. In vitro studies indicated that C274 could blunt reactivation of fetal cardiac genes and cell enlargement induced by a hypertrophic agent, isoproterenol. The anti-hypertrophic effect of C274 was suppressed by a pan-PI3K inhibitor, LY294002, or a small interfering RNA targeting PI3Kα. In vivo studies demonstrated that PCH, as marked by increased heart weight (HW) and cardiac ANF mRNA, was normalized by pre-administration with C274. In addition, Doppler echocardiography detected cardiac ventricular dilation, and contractile dysfunction in isoproterenol-treated animals, consistent with massive replacement fibrosis, reflecting cardiac cell death. As expected, pre-treatment of mice with C274 could prevent cardiac dysfunction associated with diminished cardiac cell death and fibrosis. In conclusion, CpG-ODNs are novel cardioprotective agents possessing antihypertrophic and anti-cell death activity afforded by engagement of the PI3Kα-Akt signaling. CpG-ODNs may have clinical use curbing the progression of PCH and preventing heart failure.
منابع مشابه
Left ventricular phosphorylation patterns of Akt and ERK1/2 after triiodothyronine intracoronary perfusion in isolated hearts and short-term in vivo treatment in Wistar rats
Objective(s): To determine the effects of triiodothyronine (T3) intracoronary perfusion in isolated hearts and short-term administration in rats on the left ventricular (LV) phosphorylation patterns of Akt and ERK1/2. Materials and Methods: Cardiodynamic and hemodynamic parameters were evaluated in Langendorff–perfused hearts. Left ventr...
متن کاملEnhanced cardiac PI3Kα signalling mitigates arrhythmogenic electrical remodelling in pathological hypertrophy and heart failure.
AIMS Cardiac hypertrophy and heart failure are associated with QT prolongation and lethal ventricular arrhythmias resulting from decreased K(+) current densities and impaired repolarization. Recent studies in mouse models of physiological cardiac hypertrophy revealed that increased phosphoinositide-3-kinase-α (PI3Kα) signalling results in the up-regulation of K(+) channels and the normalization...
متن کاملSuppressor of IKKɛ is an essential negative regulator of pathological cardiac hypertrophy
Although pathological cardiac hypertrophy represents a leading cause of morbidity and mortality worldwide, our understanding of the molecular mechanisms underlying this disease is still poor. Here, we demonstrate that suppressor of IKKɛ (SIKE), a negative regulator of the interferon pathway, attenuates pathological cardiac hypertrophy in rodents and non-human primates in a TANK-binding kinase 1...
متن کاملA Disintegrin and Metalloprotease‐22 Attenuates Hypertrophic Remodeling in Mice Through Inhibition of the Protein Kinase B Signaling Pathway
BACKGROUND Severe cardiac hypertrophy can lead to cardiac remodeling and even heart failure in the end, which is a leading cause of cardiovascular disease-related mortality worldwide. A disintegrin and metalloprotease-22 (ADAM22), a member of the transmembrane and secreted metalloendopeptidase family, participates in many biological processes, including those in the cardiovascular system. Howev...
متن کاملNever in Mitosis Gene A Related Kinase-6 Attenuates Pressure Overload-Induced Activation of the Protein Kinase B Pathway and Cardiac Hypertrophy
Cardiac hypertrophy appears to be a specialized form of cellular growth that involves the proliferation control and cell cycle regulation. NIMA (never in mitosis, gene A)-related kinase-6 (Nek6) is a cell cycle regulatory gene that could induce centriole duplication, and control cell proliferation and survival. However, the exact effect of Nek6 on cardiac hypertrophy has not yet been reported. ...
متن کامل